

Effects of cryopreserved human amniotic membrane on ischemic wounds

Kaoru Okada¹⁾, Kazuaki Tokodai¹⁾, Masato Sato¹⁾, O Kanna Inoue²⁾, Toshiaki Kashiwadate²⁾, Hirofumi Sugawara³⁾, Tetsuro Hoshiai⁴⁾, Masatoshi Saito⁵⁾, Masafumi Goto⁶⁾, Takashi Kamei¹

- 1) Department of Surgery, Tohoku University
- 2) Department of Surgery, Iwate Prefectural Iwai Hospital
- 3) Department of Surgery, Japan Community Health Care Organization Sendai Hospital
- 4) Department of Obstetrics and Gynecology, Tohoku University
- 5) Department of Maternal and Fetal Therapeutics, Tohoku University
- 6) Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine

Introduction

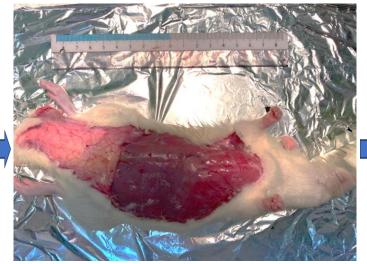
- Ischemic wounds are a very intractable disease. It is necessary to develop minimally invasive treatment of ischemic wounds for many patients cannot undergo revascularization surgery due to their severe comorbidity.
- Human amniotic membrane (hAM) has immunomodulatory, production various cytokines including VEGF and antibacterial effect, so they make it potentially useful as a wound dressing material.
- We found fresh hAM promotes the healing of ischemic wounds. However, cryopreserved hAM is more useful for clinical use.
- In this study, we examined wound healing promotion effect and angiogenesis promotion effect in order to reveal the efficacy of cryopreserved hAM as a wound dressing material for ischemic wounds.

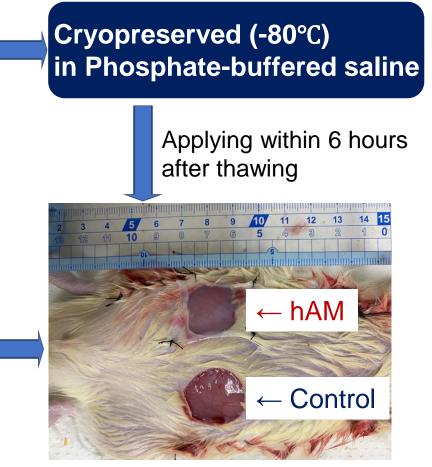
Funding information

This study was supported by Japan Society for the Promotion of Science (JSPS KAKENHI) Grant Number: 20K09138

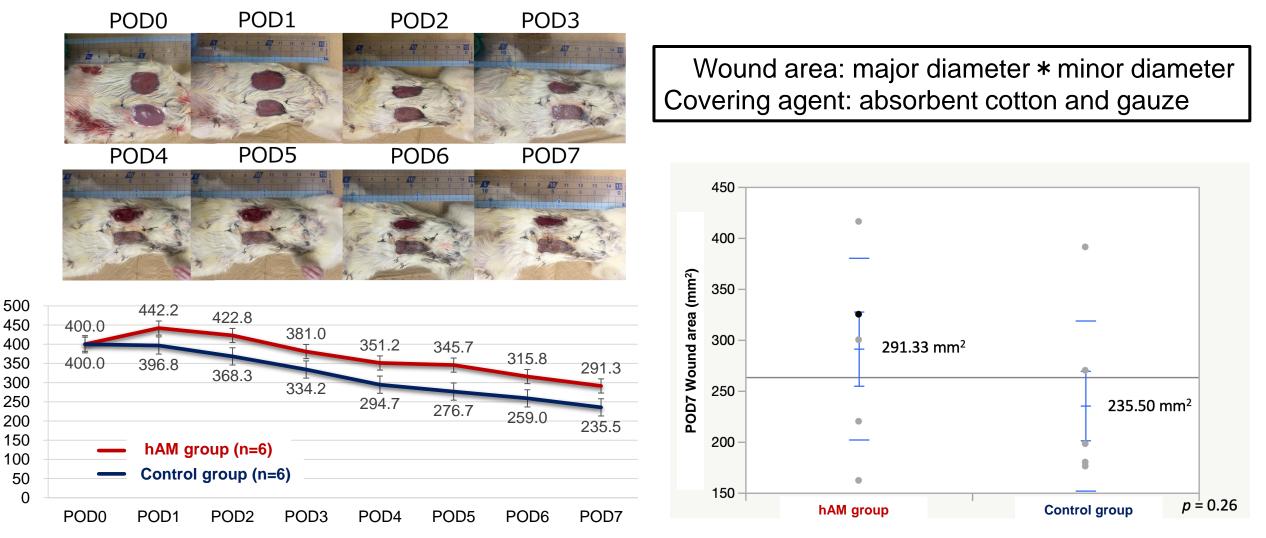
Method

<Observation information> period: 7 days items: Wound area reduction Microvessel density

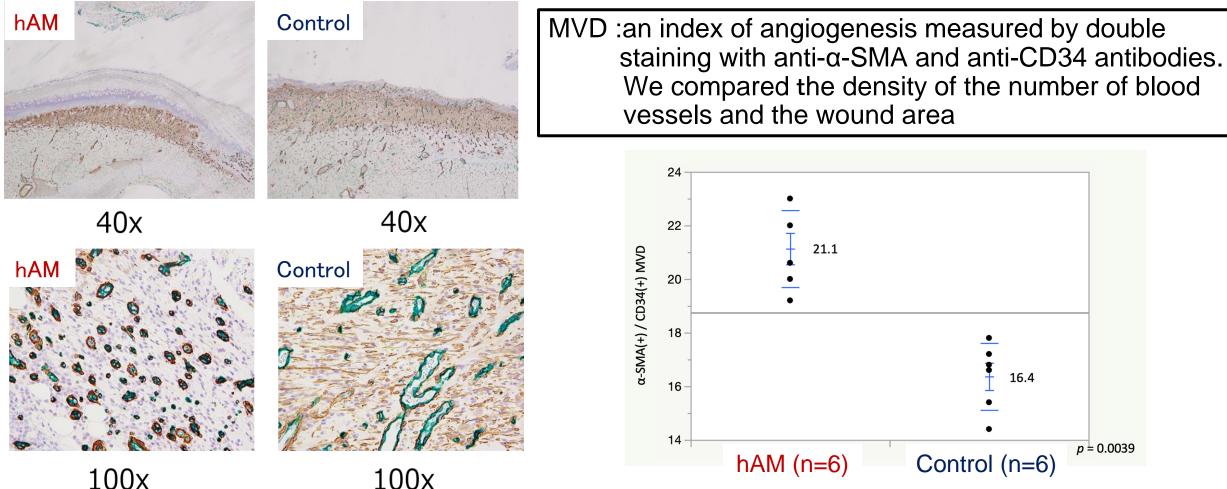

Rats: SD, male, nine weeks old, 300-350 g


Ligating the arteriovenous and nerve bundles of the inferior abdominal wall

hAM: collected from delivered placentas (cesarean section at full term)



Creating a skin flap


Excising the abdomen skin with a diameter of 2.0 cm. Xincluding fascia

Result¹ Wound area reduction

hAM group vs. control group; 291.3 vs. 235.5 mm², (p = 0.26) \Rightarrow No significant wound area reduction after seven days

Result² Microvessel density (MVD)

hAM group vs. control group; 21.1 vs. 16.4 mm², (**p** = 0.0039)

⇒The mean value of MVD was significantly higher in the hAM group than in the control group

Discussions

- Cryopreserved hAM promoted angiogenesis but did not reveal wound-healing effects.
- This results seemed to be caused that hAM were damaged by cryopreservation with PBS.
- Adding glycerol to PBS may prevent the damage to the amniotic epithelial cells.

Gholipourmalekabadi M, et al; Burns. 2020;46(6): 1254-1271.

 In addition, it is also necessary to assess the effects of the oxygenation status of the wound area.

Conclusions

- This study showed the angiogenesis-promoting effects of cryopreserved hAM but did not reveal wound-healing effects.
- The mechanism of the loss of wound healing effect through hAM cryopreservation requires further investigation.