Comparison of renal volumetry and histological features between standard and marginal donors

1) Department of Urology, Nara Medical University

Shunta Hori¹, Mitsuru Tomizawa¹, Kuniaki Inoue¹, Tatsuo Yoneda¹, Kenta Onishi¹, Yosuke Morizawa¹, Daisuke Gotoh¹, Yasushi Nakai¹, Makito Miyake¹, Kiyohide Fujimoto¹

30th International Congress of The Transplantation Society (TTS 2024)

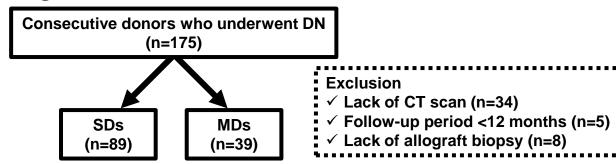
COI Disclosure Information

Shunta Hori

I(We) have no COI with regard to our presentation.

Introduction

- ✓ Recently, the Japanese Dialysis Committee stated that out of 233,501 patients on dialysis, 110 (0.05%) were LKDs, and the mean interval from DN to dialysis initiation was 249 months.
- ✓ This statement came as a big shock to Japanese transplant physicians and surgeons, and served as a reminder of the importance of evaluation and follow-up assessments of LKDs.
- ✓ Despite the criteria for SDs and MDs defined in the Japanese guidelines for LKDs, screening and prognostic tools for these groups of donors remain a topic of debate.


Objective

✓ The present study aimed to reveal differences in the CTV features and histological findings between SDs and MDs, and to investigate the association between these objective parameters and prognosis in LKDs and LKRs.

Study design

- ✓ Single-center retrospective observational study
- ✓ CTV were analyzed using the Volume Analyzer SYNAPSE VINCENT image analysis
- ✓ One-hour allograft biopsy were evaluated
- ✓ LKDs were classified into SDs and MDs according to Japanese guidelines

- Nara Medical University IRB project ID code: 3176
- ✓ The primary outcome was the difference in parameters calculated using the CTV and histological findings between the SDs and MDs
- ✓ Multivariate binary logistic regression analysis was performed and survival curves were compared using the log-rank test

Variables -		Cate	<i>P</i> value	
		SD (n=89)	MD (n=39)	P value
Age (years)	Median (IQR)	56 (49 - 63)	64 (56 - 68)	0.0012 †
Sex	Male	34 (38.2%)	19 (48.7%)	0.33 ‡
	Female	55 (61.8%)	20 (51.3%)	
Body mass index (kg/m²)	Median (IQR)	23.0 (20.8 - 24.9)	23.4 (21.7 - 26.3)	0.14 †
Body surface area (m ²)	Median (IQR)	1.63 (1.49 - 1.72)	1.66 (1.55 - 1.77)	0.26 †
Follow-up period (months)	Median (IQR)	73 (34 - 108)	68 (25 - 109)	0.47 †
Preoperative eGFR (mL/min/1.73m ²)	Median (IQR)	80.7 (72.1 - 89.3)	72.2 (66.2 - 86.0)	0.031 †

Results: Features of CTV

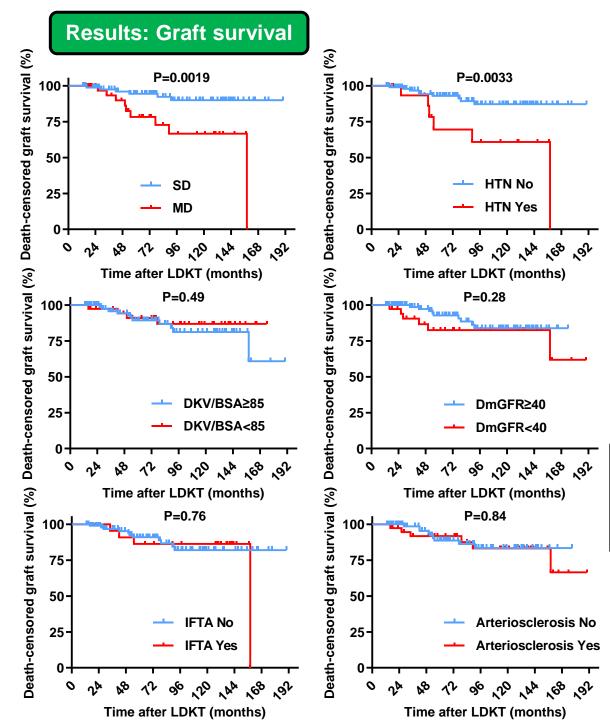
Variables -		Cate	Dyelue	
		SD (n=89)	MD (n=39)	P value
Total mGFR	Median (IQR)	92.8 (81.0 - 105.5)	86.8 (74.4 - 97.5)	0.14 †
	≥80	67 (75.3%)	24 (61.5%)	0.14 ‡
	<80	22 (24.7%)	15 (38.5%)	
Donated mGFR	Median (IQR)	47.4 (40.0 - 54.1)	42.7 (37.2 - 49.2)	0.075 †
	≥40	67 (75.3%)	24 (61.5%)	0.14 ‡
	<40	22 (24.7%)	15 (38.5%)	
Residual mGFR	Median (IQR)	46.8 (40.3 - 52.8)	43.8 (37.7 - 49.3)	0.23 †
	≥40	67 (75.3%)	25 (64.1%)	0.21 ‡
	<40	22 (24.7%)	14 (35.9%)	
TKV/BSA	Median (IQR)	180.5 (167.2 - 193.7)	178.6 (167.2 - 202.1)	0.84 †
	≥170	62 (69.7%)	28 (71.8%)	1.00 ‡
	<170	27 (30.3%)	11 (28.2%)	
DKV/BSA	Median (IQR)	90.9 (82.4 - 97.7)	92.9 (84.7 - 98.4)	0.57 †
	≥85	60 (67.4%)	28 (71.8%)	0.68 ‡
	<85	29 (32.6%)	11 (28.2%)	
RKV/BSA	Median (IQR)	88.9 (82.7 - 97.3)	88.6 (81.5 - 101.7)	0.87 †
	≥85	59 (66.3%)	24 (61.5%)	0.69 ‡
	<85	30 (33.7%)	15 (38.5%)	

Results:
Exploration
of predictive
factors for
RRF in all
LKDs

			eGFR <45			
	Variables		Multivariate analysis			
			OR	95%CI	P value	
	Age	≤60	1			
		>60	2.56	1.06 - 6.16	0.036	
	ВМІ	≤25	1			
		>25	2.99	1.11 - 8.05	0.031	
	Residual KV/BSA	≥85	1			
		<85	4.11	1.70 - 9.96	0.002	
	Marginal donor	No	1			
		Yes	0.95	0.28 - 3.23	0.93	

Results: Features of histological findings

Variables -		Category		Dyelue	
		SD (n=89)	MD (n=39)	P value	
Glomerulus					
thrombus/glomerular capillary congestion	No	88 (98.9%)	39 (100%)	1.00 ‡	
	Yes	1 (1.1%)	0 (0%)		
sclerosis	No	65 (73.0%)	27 (69.2%)	0.67 ‡	
	Yes	24 (27.0%)	12 (30.8%)		
microvascular inflammation	No	80 (89.9%)	36 (92.3%)	1.00 ‡	
	Yes	9 (10.1%)	3 (7.7%)		
Vessel					
arteriolar hyalinosis/necrosis	No	81 (91.0%)	36 (92.3%)	1.00 ‡	
	Yes	8 (9.0%)	3 (7.7%)		
arteriosclerosis	No	61 (68.5%)	28 (71.8%)	0.83 ‡	
	Yes	28 (31.5%)	11 (28.2%)		
Tubulointerstitium					
calcification/lithiasis	No	89 (100%)	38 (97.4%)	0.30 ‡	
	Yes	0 (0%)	1 (2.6%)		
interstitial inflammation	No	80 (89.9%)	29 (74.4%)	0.031 ‡	
	Yes	9 (10.1%)	10 (25.6%)		
interstitial fibrosis tubular atrophy	No	78 (87.6%)	28 (71.8%)	0.041 ‡	
	Yes	11 (12.4%)	11 (28.2%)		


Results: Exploration of predictive factors for RRF in MDs

		eGFR <45			
Variables		Univariate analysis			
		OR	95%CI	P value	
Diabetes mellitus	No	1			
	Yes	2.29	1.36 - 3.55	0.0096	
Residual kidney mGFR	≥40	1			
	<40	19.00	3.15 - 94.32	0.0005	
Residual KV/BSA	≥85	1			
	<85	7.00	1.71 - 23.99	0.0096	
Arteriosclerosis	No	1			

Yes

4.80

1.03 - 22.29 0.045

Conclusions As described in guideline, age, BMI, and HTN are definitely important considering marginal donors, whereas RKV/BSA and **RmGFR** are also informative to determine eligibility as marginal donors **Determining eligibility** for marginal donors Association of donor factors with recipient graft survival Marginal donors who should be followed **Donated kidney procured** carefully from marginal donors, especially with HTN, should be followed carefully in terms of both graft and patient survival

There is no room for debate that long-term follow-

advanced age, small RKV/BSA, or arteriosclerosis.

up is important in all donors. Particularly,

personalized follow-up should be provided to

improve prognosis for marginal donors with

CTV and pathological findings can be used to establish clearer marginal donor criteria and select donors that require attention during follow-up