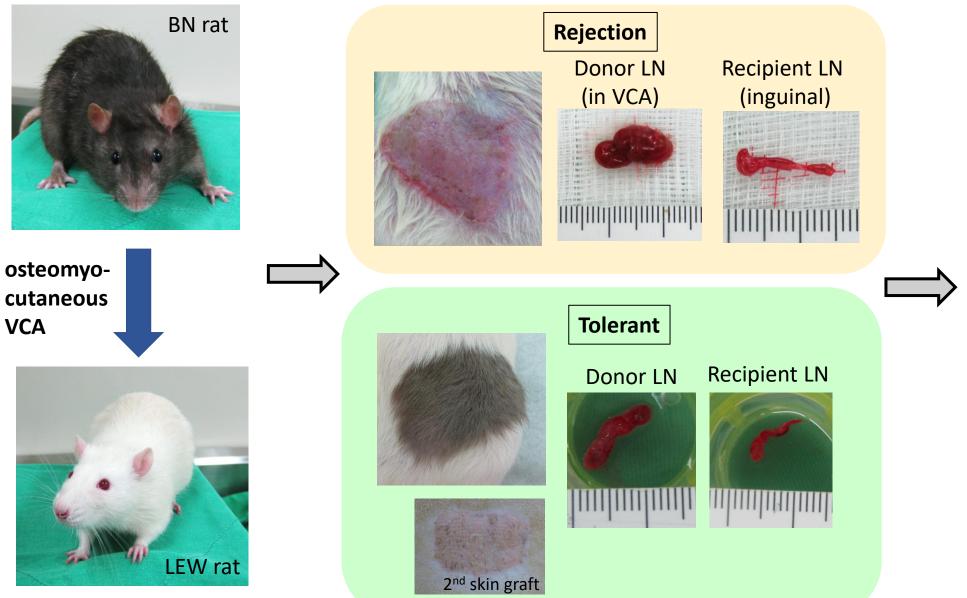
Deciphering the interplay of lymph node profiles with outcomes in vascularized composite allotransplantation

Hui-Yun Cheng¹, Madonna Rica Anggelia², Chi-Fan Lin¹, Shiao-Chin Liu², Cheng-Hung Lin^{1,2}.

¹Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Gueishan, Taiwan; ²Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taiwan

Background: As crucial secondary lymphoid organs located at the unction between allograft and host, the complex cellular and molecular processes within lymph nodes (LNs) following vascularized composite allotransplantation (VCA) are poorly understood. Additionally, the connection between these processes and the eventual outcome of the allograft remains to be clarified.

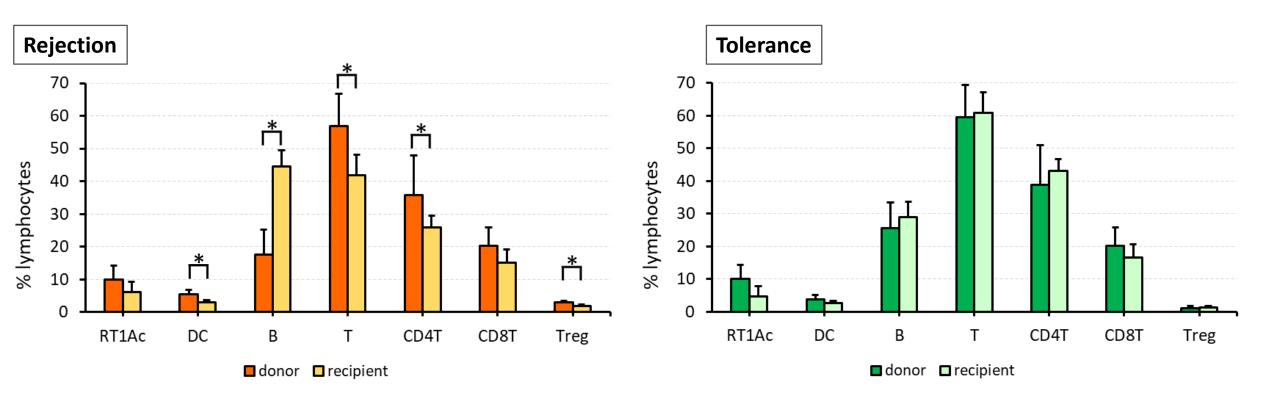
Materials and Methods: The lymph nodes were collected from within the hindlimb-derived osteomyocutaneous VCA and the draining lymph nodes in recipients confirmed to either undergo rejecting the transplants or develop donor-specific tolerance. Flow cytometry was used to assess lymphocyte compositions, while RNA sequencing (RNAseq) was employed to analyze gene expression.


Results and Discussions: Flow cytometric analysis revealed significant different B cells levels and dendritic cell population in LNs associated with the VCA outcome and the LN origins. Biased donor chimerism levels were also observed. The RNAseq analysis unveiled a wealth of alterations of gene expression within donor-versus recipient-derived LNs linked to rejection, comprising approximately 1000 up-regulated and 370 down-regulated genes. Notable changes in cytokines, chemokine, receptors, major histocompatibility complexes (MHC) genes, as well as genes implicated in cytoskeleton remodeling and metabolism control were observed. The ongoing investigation aims to explore the mechanistic roles played by these genes, seeking to unravel their intricate interplay with cellular dynamics and studying their potential as therapeutic targets to enhance VCA outcomes.

Conclusion: Our investigation unveiled LN cellular and molecular changes linked to rejection of VCA and development of donor-specific tolerance. Further detailed exploration holds promise for developing targeted interventions to enhance VCA survival and establish tolerance.

Keywords:

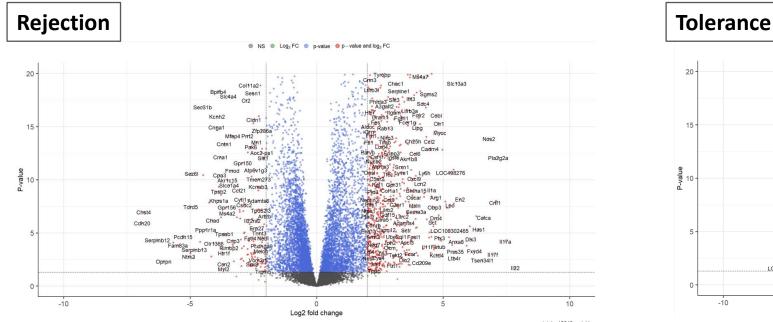
[1] VCA [2] graft rejection [3] donor-specific tolerance [4] RNA sequencing [5] lymph node

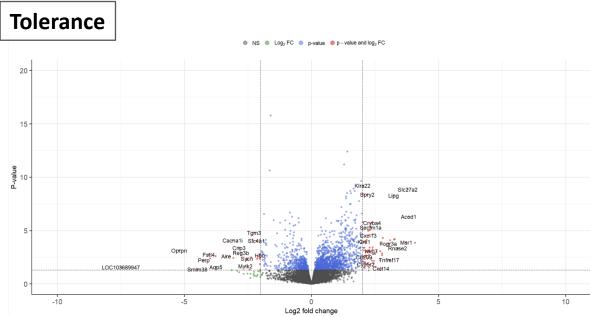

Experimental Design

Lymph nodes for

- Cell profiling (flow cytometry)
- Gene profiling (RNAseq)

Flow cytometric analysis showed uneven cellular distribution between donor- and recipientoriginated lymph nodes




N=6, Mean + stdev *: p <0.05 by Student's t test

RNAseq reveled different degrees of gene expression alterations in donor vs recipient lymph nodes depending on VCA outcome

VCA outcome	characterized genes		s recipient 0.05	donor vs recipient p < 0.001		
Rejection	12019	up regulation 1888	down regulation 1028	up regulation 1392	down regulation 706	
Tolerant	11105	up regulation 216	down regulation 35			

up regulation: \geq 2 fold; down regulation: \leq 0.5 fold

Differentially expressed genes in donor LNs of rejecting VCA participate in various processes

	Donor LN-upregulated genes: 1392			Donor LN-downregulated genes: 70)6
Category	Term	Gene count	Category	Term	Gene count
	Hydrolase	173		DNA-binding	62
Molecular	Oxidoreductase	80	Molecular	Kinase	41
function	Protease	74	function	Transferase	81
	Cytokine	31		Chromatin regulator	13
	Secreted	225		Nucleus	172
Cellular	Lysosome	64	Cellular	Synapse	28
component	Cell membrane	268	component	Cell projection	39
	Extracellular matrix	41		Extracellular matrix	13
	Innate immunity	60		Transcription regulation	67
Biological	Immunity	89	Biological	Transcription	68
process	Inflammatory response	32	process	Exocytosis	7
	Chemotaxis	20		Endocytosis	8
	Lysosome	42		Phospholipase D signaling	13
KEGG	Cytokine-cytokine receptor interaction	58	KEGG	Phosphatidylinositol signaling	10
pathway	Phagosome	47	pathway	Herpes simplex virus 1 infection	24
	Rheumatoid arthritis	30		Nicotinate and nicotinamide metabolism	6

Analyzed the p <0.001 genes by DAVID bioinformatics, NIH

Donor LN-upregulated genes: 216

Donor LN-downregulated genes: 35

Category	Term	Gene count	Category	Term	Gene count
	Receptor	59		lon Channel	4
Molecular	Cytokine	8	Molecular	Calmodulin-binding	3
function	Tyrosine-protein kinase	5	function	Voltage-gated channel	3
	Serine protease	6		Calcium channel	2
	Cell membrane	55	Cellular		0
Cellular	Membrane	123	component	Cell membrane	8
component	Secreted	30		lon transport	6
	Cell junction	7	Biological	Calcium transport	3
	Chemotaxis	10	process	Potassium transport	3
process	Innate immunity	16		Transport	8
	Immunity	22		Calcium signaling pathway	4
	Complement pathway	7	KEGG	African trypanosomiasis	2
	Complement and coagulation cascades	14	pathway	Malaria	2
KEGG	Staphylococcus aureus infection	12		Circadian entrainment	2
	Viral protein interaction with cytokine and cytokine receptor	r 11			
	Cytokine-cytokine receptor interaction	15			

Analyzed the p <0.05 genes by DAVID bioinformatics, NIH

Conclusion

- Following VCA, the donor-derived LNs within the graft and the recipient's draining LNs exhibited different cellular and gene expression
 patterns depending on the fate of the VCA, whether it was rejection or the induced donor-specific tolerance.
- During VCA rejection, donor-derived LNs exhibited significantly higher levels of dendritic cells, CD4⁺ T cells, and Tregs, along with a lower level of B cells. There were also notable changes in gene expression, including those involved in activating lysosomes, immune responses, and chemotaxis, while suppressing the expression of certain nuclear proteins.
- When donor-specific tolerance was induced, the donor- and the recipient-derived LNs showed similar levels of B cells, DCs, and T cells, although donor LNs had significantly higher level of donor-originated cells. The gene expression patterns were more similar between the two, with fewer genes exhibiting significantly altered expression levels.

Acknowledgements

- The RNAseq experiments were performed by the Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taiwan
- This work was supported by the grants (CMRPG3M0162 and CMRPG3M0552) from Chang Gung Medical Foundation, Taiwan