

Evaluation of Donor-Derived Cell-Free DNA (ddcfDNA) levels in Primary Graft Dysfunction (PGD) After Lung Transplantation

Jeany P. Villamizar^{1,2}, Juan C. Fernandez^{1,2}, Andres Pelaez^{1,2}, Renata Ponsirenas⁴, Guil Rozenbaum^{1,2}, Mauricio Tellez^{1,2}, Sama Al-Bayati^{1,2}, Suresh Manickavel^{1,2}, Daniel Buitrago^{1,3}, and Juan C. Salgado^{1,2}

¹Miami Transplant Institute, Jackson Health System, Miami, FL, USA
²Division of Pulmonary and Critical Care, Department of Medicine, Miller School of Medicine Miami, University of Miami, Miami, FL, United States
³Division of Thoracic Surgery and Lung Transplant, Department of Medicine, Miller School of Medicine Miami, University of Miami, Miami, FL, USA
⁴ Medical Affairs, CareDx, Brisbane, CA, USA

Introduction

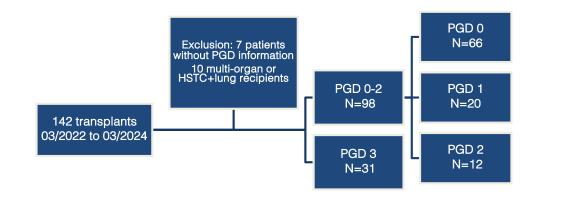
- Primary Graft Dysfunction (PGD) is a common complication after lung transplantation that occurs within 72 hours of surgery and affects about 30% of the lung transplant population, being a major cause of death post-transplant.
- The pathophysiology of PGD is complex and believed to result from a combination of insults that occur during the lung procurement, storage, and implantation processes.
- dd-cfDNA levels in the months following transplantation serve as predictors of long-term outcomes, including chronic lung allograft dysfunction (CLAD).
- dd-cfDNA levels can provide insights into the degree of early allograft injury.

AIM – To evaluate the levels of dd-cfDNA according to the time post-transplant and PGD occurrence in a population under ddcfDNA surveillance for allograft injury.

Methodology

This was a retrospective evaluation of all lung transplant recipients transplanted between Jan/2023 and Jan/2024 in surveillance with dd-cfDNA.

Multi-organ recipients were excluded.


Our surveillance protocol includes dd-cfDNA testing monthly post-discharge.

PGD status was evaluated at 72 hours post-transplant and graded based on ISHLT grading.

We compared the time to the first test evaluation between patients with PGD 3 and PGD 0-2.

Then, we compared the levels of dd-cfDNA in the first three months post-transplant between each group.

Population and dd-cfDNA after discharge from transplant

Table 1. Patient Demographics	PGD 0-2	PGD 3	TOTAL
Number (%)	98 (75.9)	31 (24.1)	129
Gender			
Male N(%)	61 (62.2)	11 (35.4)	72 (55.8)
DCD N(%)	4 (4.1)	1 (3.2)	5 (3.6)
Single Lung Tx N(%)	18 (18.4)	4 (12.9)	24 (17.4)
Sensitized PRA>10% N(%)	12 (13.4)	6 (19.4)	18 (13.9)
Time to 1st dd-cfDNA days median (min-max) 38 (15-327)	60 (30-142)	41 (15-327)
dd-cfDNA (%) median (min-max)	0.96 (0.08-5.7)	0.6 (0.12-5.4)	0.95 (0.12-5.7)

Figure 1. Time to 1st dd-cfDNA test according with PGD status at 72 hrs

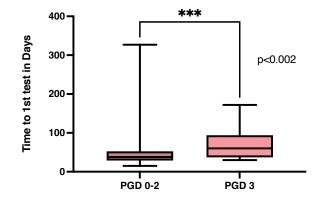
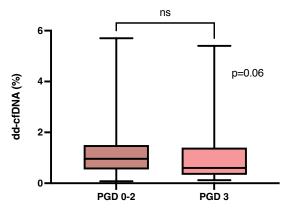
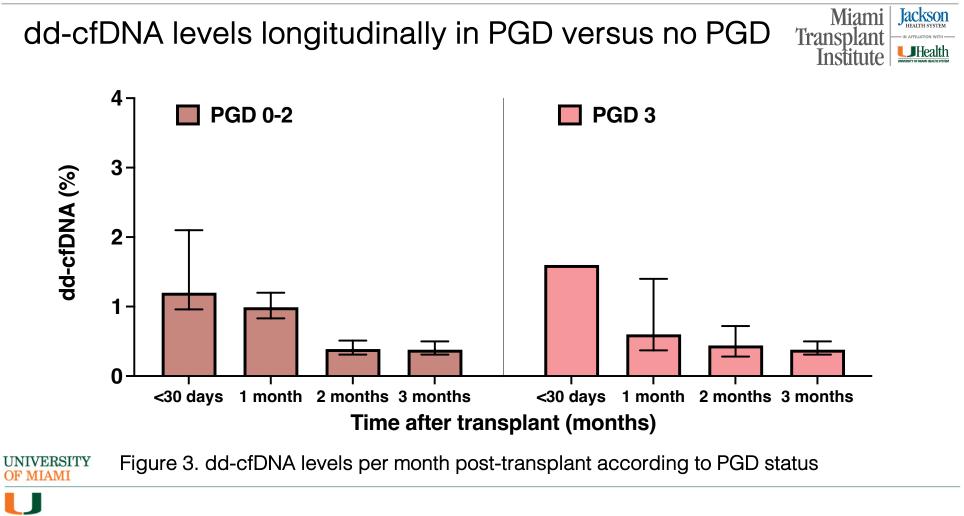




Figure 2. 1st dd-cfDNA % according with PGD status at 72 hrs

CONCLUSIONS

Patients without PGD had earlier tests with less than 30 days post-transplant, contributing to elevated levels of dd-cfDNA.

dd-cfDNA trajectories are similar between PGD and non-PGD populations.

More studies are needed to evaluate the correlations between immune events and these specific elevations.